A Quantitative Object-Level Metric for Segmentation Performance and Its Application to Cell Nuclei
نویسندگان
چکیده
We present an object-level metric for segmentation performance which was developed to quantify both overand under-segmentation errors, as well as to penalize segmentations with larger deviations in object shape. This metric is applied to the problem of segmentation of cell nuclei in routinely stained H&E histopathology imagery. We show the correspondence between the metric terms and qualitative observations of segmentation quality, particularly the presence of overand under-segmentation. The computation of this metric does not require the use of any point-to-point or region-to-region correspondences but rather simple computations using the object mask from both the segmentation and ground truth.
منابع مشابه
Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation
Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...
متن کاملQuantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملCancer Cells Detection and Classification in Biopsy Image
In this research work, to understand the types of cancer cell and attempt to analyses the biopsy slides. In this method to identify cancer parts just using simple technique of isolation of insignificant portion of biopsy slide by cancer cell level and object level segmentation and classification. Many features used in the cancer cell detection and classification of biopsy image are inspired by ...
متن کاملApplication of Shape Analysis on 3D Images - MRI of Renal Tumors
The image recognotion and the classification of objects according to the images are more in focus of interests, especially in medicine. A mathematical procedure allows us, not only to evaluate the amount of data per se, but also ensures that each image is pro- cessed similarly. Here in this study, we propose the power of shape analysis, in conjunction with neural networks for reducing white n...
متن کاملSegmentation Assisted Object Distinction for Direct Volume Rendering
Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital applications in medical and biological imaging. Nevertheless, it is inherently open to cluttered classification results. It suffers from overlapping transfer function values and lacks a sufficiently powerful voxel parsing mechanism for object distinction. In this work, we are proposing an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007